Promedios móviles - promedios simples y exponenciales - Simple y exponencial Introducción Los promedios móviles suavizan los datos de precios para formar un indicador de tendencia siguiente. No predicen la dirección del precio, sino que definen la dirección actual con un retraso. Los promedios móviles se retrasan porque están basados en precios pasados. A pesar de este retraso, las medias móviles ayudan a suavizar la acción de los precios y filtran el ruido. También forman los bloques de construcción de muchos otros indicadores técnicos y superposiciones, como Bollinger Bands. MACD y el oscilador de McClellan. Los dos tipos más populares de promedios móviles son el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA). Estos promedios móviles pueden usarse para identificar la dirección de la tendencia o definir niveles potenciales de soporte y resistencia. Aquí hay un gráfico con un SMA y un EMA en él: Cálculo del promedio móvil simple Un promedio móvil simple se forma computando el precio medio de un título sobre un número específico de períodos. La mayoría de las medias móviles se basan en los precios de cierre. Una media móvil simple de 5 días es la suma de cinco días de los precios de cierre dividida por cinco. Como su nombre lo indica, un promedio móvil es un promedio que se mueve. Los datos antiguos se eliminan a medida que vienen disponibles nuevos datos. Esto hace que el promedio se mueva a lo largo de la escala de tiempo. A continuación se muestra un ejemplo de un promedio móvil de 5 días que evoluciona en tres días. El primer día de la media móvil simplemente cubre los últimos cinco días. El segundo día de la media móvil desciende el primer punto de datos (11) y añade el nuevo punto de datos (16). El tercer día de la media móvil continúa cayendo el primer punto de datos (12) y añadiendo el nuevo punto de datos (17). En el ejemplo anterior, los precios aumentan gradualmente de 11 a 17 en un total de siete días. Observe que la media móvil también aumenta de 13 a 15 durante un período de cálculo de tres días. También observe que cada valor promedio móvil es justo debajo del último precio. Por ejemplo, el promedio móvil para el primer día es igual a 13 y el último precio es 15. Los precios de los cuatro días anteriores fueron más bajos y esto hace que el promedio móvil se retrasa. Cálculo del promedio móvil exponencial Los promedios móviles exponenciales reducen el retraso aplicando más peso a los precios recientes. La ponderación aplicada al precio más reciente depende del número de periodos de la media móvil. Hay tres pasos para calcular una media móvil exponencial. En primer lugar, calcular el promedio móvil simple. Un promedio móvil exponencial (EMA) tiene que comenzar en alguna parte así que una media móvil simple se utiliza como EMA anterior del período anterior en el primer cálculo. Segundo, calcule el multiplicador de ponderación. En tercer lugar, calcular la media móvil exponencial. La siguiente fórmula es para un EMA de 10 días. Una media móvil exponencial de 10 períodos aplica una ponderación de 18.18 al precio más reciente. Un EMA de 10 periodos también puede ser llamado un EMA 18.18. Una EMA de 20 periodos aplica una ponderación de 9.52 al precio más reciente (2 / (201) .0952). Observe que la ponderación para el período de tiempo más corto es más que la ponderación para el período de tiempo más largo. De hecho, la ponderación disminuye a la mitad cada vez que el período de media móvil se duplica. Si desea un porcentaje específico para un EMA, puede usar esta fórmula para convertirlo en períodos de tiempo y luego ingresar ese valor como el parámetro EMA039s: A continuación se muestra un ejemplo de hoja de cálculo de una media móvil simple de 10 días y un valor de 10- Promedio móvil exponencial para Intel. Los promedios móviles simples son directos y requieren poca explicación. El promedio de 10 días se mueve simplemente mientras que nuevos precios están disponibles y los viejos precios caen apagado. El promedio móvil exponencial comienza con el valor de la media móvil simple (22,22) en el primer cálculo. Después del primer cálculo, la fórmula normal se hace cargo. Debido a que un EMA comienza con un promedio móvil simple, su verdadero valor no se realizará hasta 20 o más períodos más tarde. En otras palabras, el valor de la hoja de cálculo Excel puede diferir del valor del gráfico debido al corto período de revisión. Esta hoja de cálculo sólo se remonta a 30 períodos, lo que significa que el efecto de la media móvil simple ha tenido 20 períodos para disipar. StockCharts se remonta al menos 250 períodos (por lo general mucho más) para sus cálculos de modo que los efectos de la media móvil simple en el primer cálculo se han disipado completamente. El factor de Lag Cuanto más largo es el promedio móvil, más el retraso. Una media móvil exponencial de 10 días abrazará los precios de cerca y se convertirá poco después de que los precios giren. Los promedios móviles cortos son como los veleros, ágiles y rápidos de cambiar. Por el contrario, una media móvil de 100 días contiene muchos datos pasados que lo ralentizan. Los promedios móviles más largos son como los petroleros oceánicos - letárgicos y lentos para cambiar. Se necesita un movimiento de precios más grande y más largo para una media móvil de 100 días para cambiar el rumbo. La tabla de arriba muestra el SampP 500 ETF con una EMA de 10 días siguiendo de cerca los precios y una molienda SMA de 100 días más alta. Incluso con la disminución de enero-febrero, la SMA de 100 días mantuvo el curso y no rechazó. La SMA de 50 días se sitúa entre los promedios móviles de 10 y 100 días cuando se trata del factor de retraso. Simples versus promedios móviles exponenciales Aunque hay claras diferencias entre promedios móviles simples y promedios móviles exponenciales, uno no es necesariamente mejor que el otro. Los promedios móviles exponenciales tienen menos retraso y, por lo tanto, son más sensibles a los precios recientes y las recientes variaciones de precios. Los promedios móviles exponenciales se convertirán antes de promedios móviles simples. Los promedios móviles simples, por otro lado, representan un verdadero promedio de precios para todo el período de tiempo. Como tales, los promedios móviles simples pueden ser más adecuados para identificar niveles de soporte o resistencia. La preferencia media móvil depende de los objetivos, el estilo analítico y el horizonte temporal. Los cartistas deben experimentar con ambos tipos de promedios móviles, así como diferentes plazos para encontrar el mejor ajuste. La siguiente tabla muestra IBM con la SMA de 50 días en rojo y la EMA de 50 días en verde. Ambos culminaron a finales de enero, pero la disminución en la EMA fue más nítida que la disminución de la SMA. La EMA apareció a mediados de febrero, pero la SMA continuó baja hasta finales de marzo. Tenga en cuenta que la SMA apareció más de un mes después de la EMA. Longitudes y plazos La longitud del promedio móvil depende de los objetivos analíticos. Promedios cortos móviles (5-20 períodos) son los más adecuados para las tendencias a corto plazo y el comercio. Los cartistas interesados en las tendencias a mediano plazo optarían por promedios móviles más largos que podrían extenderse de 20 a 60 períodos. Los inversores a largo plazo preferirán las medias móviles con 100 o más períodos. Algunas longitudes móviles son más populares que otras. El promedio móvil de 200 días es quizás el más popular. Debido a su longitud, esto es claramente una media móvil a largo plazo. A continuación, el promedio móvil de 50 días es muy popular para la tendencia a mediano plazo. Muchos cartistas utilizan los promedios móviles de 50 días y 200 días juntos. A corto plazo, una media móvil de 10 días fue muy popular en el pasado porque era fácil de calcular. Uno simplemente agregó los números y movió el punto decimal. Identificación de tendencias Las mismas señales pueden generarse utilizando promedios móviles simples o exponenciales. Como se mencionó anteriormente, la preferencia depende de cada individuo. Estos ejemplos a continuación utilizarán promedios móviles simples y exponenciales. El término media móvil se aplica tanto a promedios móviles simples como exponenciales. La dirección de la media móvil transmite información importante sobre los precios. Una media móvil en ascenso muestra que los precios están aumentando. Una media móvil decreciente indica que los precios, en promedio, están cayendo. El aumento de la media móvil a largo plazo refleja una tendencia alcista a largo plazo. Una caída del promedio móvil a largo plazo refleja una tendencia a la baja a largo plazo. El gráfico anterior muestra 3M (MMM) con una media móvil exponencial de 150 días. Este ejemplo muestra cuán bien funcionan las medias móviles cuando la tendencia es fuerte. La EMA de 150 días rechazó en noviembre de 2007 y otra vez en enero de 2008. Observe que tomó una declinación 15 para invertir la dirección de esta media móvil. Estos indicadores rezagados identifican reversiones de tendencias a medida que ocurren (en el mejor de los casos) o después de que ocurren (en el peor). MMM continuó más bajo en marzo de 2009 y luego subió 40-50. Observe que la EMA de 150 días no apareció hasta después de este aumento. Una vez que lo hizo, sin embargo, MMM continuó más alto en los próximos 12 meses. Los promedios móviles trabajan brillantemente en fuertes tendencias. Crossovers dobles Dos medias móviles se pueden usar juntas para generar señales de cruce. En Análisis Técnico de los Mercados Financieros. John Murphy llama a esto el método de crossover doble. Los crossovers dobles implican una media móvil relativamente corta y una media móvil relativamente larga. Como con todas las medias móviles, la longitud general de la media móvil define el marco de tiempo para el sistema. Un sistema que utilice un EMA de 5 días y un EMA de 35 días se consideraría a corto plazo. Un sistema que utilizara un SMA de 50 días y un SMA de 200 días se consideraría de mediano plazo, tal vez incluso a largo plazo. Un cruce alcista ocurre cuando el promedio móvil más corto cruza por encima del promedio móvil más largo. Esto también se conoce como una cruz de oro. Un crossover bajista ocurre cuando el promedio móvil más corto cruza debajo de la media móvil más larga. Esto se conoce como una cruz muerta. Los cruces de media móvil producen señales relativamente tardías. Después de todo, el sistema emplea dos indicadores retardados. Cuanto más largo sea el promedio móvil, mayor será el desfase en las señales. Estas señales funcionan muy bien cuando una buena tendencia se apodera. Sin embargo, un sistema de crossover de media móvil producirá muchos whipsaws en ausencia de una tendencia fuerte. También hay un método triple crossover que implica tres promedios móviles. De nuevo, se genera una señal cuando la media móvil más corta cruza las dos medias móviles más largas. Un simple sistema de crossover triple puede implicar promedios móviles de 5 días, 10 días y 20 días. La tabla anterior muestra Home Depot (HD) con una EMA de 10 días (línea punteada verde) y EMA de 50 días (línea roja). La línea negra es el cierre diario. El uso de un crossover promedio móvil habría dado lugar a tres whipsaws antes de coger un buen comercio. La EMA de 10 días se rompió por debajo de la EMA de 50 días a finales de octubre (1), pero esto no duró mucho ya que los 10 días retrocedieron a mediados de noviembre (2). Esta cruz duró más tiempo, pero el siguiente cruce bajista en enero (3) ocurrió cerca de finales de noviembre los niveles de precios, dando lugar a otro whipsaw. Esta cruz bajista no duró mucho ya que la EMA de 10 días retrocedió por encima de los 50 días unos días después (4). Después de tres malas señales, la cuarta señal prefiguró un movimiento fuerte mientras que la acción avanzó sobre 20. Hay dos takeaways aquí. Primero, los crossovers son propensos al whipsaw. Se puede aplicar un filtro de precio o tiempo para ayudar a prevenir las sierras. Los operadores pueden requerir que el crossover dure 3 días antes de actuar o requiera que la EMA de 10 días se mueva por encima / por debajo del EMA de 50 días por una cierta cantidad antes de actuar. En segundo lugar, MACD se puede utilizar para identificar y cuantificar estos crossovers. MACD (10, 50, 1) mostrará una línea que representa la diferencia entre las dos medias móviles exponenciales. MACD se vuelve positivo durante una cruz de oro y negativo durante una cruz muerta. El oscilador de precio porcentual (PPO) se puede utilizar de la misma manera para mostrar diferencias porcentuales. Tenga en cuenta que MACD y el PPO se basan en promedios móviles exponenciales y no coincidirá con los promedios móviles simples. Este gráfico muestra Oracle (ORCL) con EMA de 50 días, EMA de 200 días y MACD (50.200,1). Hubo cuatro crossovers de media móvil durante un período de 2 1/2 años. Los tres primeros resultaron en whipsaws o malos oficios. Una tendencia sostenida comenzó con el cuarto crossover como ORCL avanzó a mediados de los 20s. Una vez más, los crossovers medios móviles funcionan muy bien cuando la tendencia es fuerte, pero producen pérdidas en ausencia de una tendencia. Crossovers de precios Los promedios móviles también pueden usarse para generar señales con crossovers de precios simples. Una señal alcista se genera cuando los precios se mueven por encima de la media móvil. Se genera una señal bajista cuando los precios se mueven por debajo de la media móvil. Los crossovers de precios se pueden combinar para comerciar dentro de la tendencia más grande. La media móvil más larga establece el tono para la tendencia más grande y la media móvil más corta se utiliza para generar las señales. Uno buscaría cruces de precios alcistas sólo cuando los precios ya están por encima de la media móvil más larga. Esto estaría negociando en armonía con la tendencia más grande. Por ejemplo, si el precio está por encima de la media móvil de 200 días, los cartistas sólo se centrarán en las señales cuando el precio se mueve por encima de la media móvil de 50 días. Obviamente, un movimiento por debajo de la media móvil de 50 días precedería a tal señal, pero tales cruces bajistas serían ignorados porque la tendencia más grande es hacia arriba. Una cruz bajista simplemente sugeriría un retroceso dentro de una mayor tendencia alcista. Un retroceso por encima de la media móvil de 50 días señalaría una subida de los precios y la continuación de la mayor tendencia alcista. El siguiente gráfico muestra Emerson Electric (EMR) con la EMA de 50 días y EMA de 200 días. La acción se movió por encima y se mantuvo por encima de la media móvil de 200 días en agosto. Hubo bajadas por debajo de los 50 días EMA a principios de noviembre y de nuevo a principios de febrero. Los precios se movieron rápidamente por encima de la EMA de 50 días para proporcionar señales alcistas (flechas verdes) en armonía con la mayor tendencia alcista. MACD (1,50,1) se muestra en la ventana del indicador para confirmar los cruces de precios por encima o por debajo de la EMA de 50 días. El EMA de 1 día es igual al precio de cierre. El MACD (1,50,1) es positivo cuando el cierre está por encima del EMA de 50 días y negativo cuando el cierre está por debajo del EMA de 50 días. Soporte y Resistencia Los promedios móviles también pueden actuar como soporte en una tendencia alcista y resistencia en una tendencia bajista. Una tendencia alcista a corto plazo podría encontrar apoyo cerca de la media móvil simple de 20 días, que también se utiliza en bandas de Bollinger. Una tendencia alcista a largo plazo podría encontrar apoyo cerca del promedio móvil de 200 días, que es el promedio móvil más popular a largo plazo. De hecho, el promedio móvil de 200 días puede ofrecer soporte o resistencia simplemente porque es tan ampliamente utilizado. Es casi como una profecía autocumplida. El gráfico de arriba muestra el NY Composite con el promedio móvil simple de 200 días desde mediados de 2004 hasta finales de 2008. Los 200 días de apoyo brindado numerosas veces durante el avance. Una vez que la tendencia se invirtió con una ruptura de apoyo superior doble, el promedio móvil de 200 días actuó como resistencia alrededor de 9500. No espere soporte exacto y niveles de resistencia de promedios móviles, especialmente medias móviles más largas. Los mercados son impulsados por la emoción, lo que los hace propensos a los rebasamientos. En lugar de los niveles exactos, las medias móviles se pueden utilizar para identificar las zonas de apoyo o resistencia. Conclusiones Las ventajas de utilizar promedios móviles deben sopesarse contra las desventajas. Los promedios móviles son tendencia que sigue, o rezagada, los indicadores que serán siempre un paso detrás. Esto no es necesariamente una cosa mala. Después de todo, la tendencia es su amigo y es mejor el comercio en la dirección de la tendencia. Medias móviles aseguran que un comerciante está en línea con la tendencia actual. A pesar de que la tendencia es su amigo, los valores pasan una gran cantidad de tiempo en rangos comerciales, lo que hace que los promedios móviles sean ineficaces. Una vez en una tendencia, los promedios móviles le mantendrá en, pero también dar señales tardías. Don039t esperan vender en la parte superior y comprar en la parte inferior utilizando promedios móviles. Al igual que con la mayoría de las herramientas de análisis técnico, las medias móviles no deben usarse por sí solas, sino en conjunto con otras herramientas complementarias. Los cartistas pueden usar promedios móviles para definir la tendencia general y luego usar RSI para definir los niveles de sobrecompra o sobreventa. Adición de promedios móviles a los gráficos de StockCharts Los promedios móviles están disponibles como una función de superposición de precios en el workbench de SharpCharts. Utilizando el menú desplegable Superposiciones, los usuarios pueden elegir un promedio móvil simple o un promedio móvil exponencial. El primer parámetro se utiliza para establecer el número de períodos de tiempo. Se puede agregar un parámetro opcional para especificar el campo de precio que se debe utilizar en los cálculos: O para el Abierto, H para el Alto, L para el Bajo y C para el Cierre. Una coma se utiliza para separar los parámetros. Se puede agregar otro parámetro opcional para cambiar las medias móviles a la izquierda (pasado) oa la derecha (futuro). Un número negativo (-10) cambiaría la media móvil a la izquierda 10 períodos. Un número positivo (10) cambiaría la media móvil a los 10 periodos correctos. Múltiples promedios móviles pueden superponerse a la gráfica de precios simplemente agregando otra línea de superposición al workbench. Los miembros de StockCharts pueden cambiar los colores y el estilo para diferenciar entre varios promedios móviles. Después de seleccionar un indicador, abra Opciones avanzadas haciendo clic en el pequeño triángulo verde. Las Opciones avanzadas también se pueden usar para agregar una superposición de promedio móvil a otros indicadores técnicos como RSI, CCI y Volumen. Haga clic aquí para un gráfico en vivo con varios promedios móviles diferentes. Usando los promedios móviles con las exploraciones de StockCharts Aquí hay algunas exploraciones de la muestra que los miembros de StockCharts pueden utilizar para explorar diversas situaciones del promedio móvil: Movimiento alcista de la media cruzada: Esta exploraciones busca las poblaciones con una media móvil simple de 150 días y una cruz alcista de los 5 EMA y EMA de 35 días. La media móvil de 150 días está subiendo, siempre y cuando se está negociando por encima de su nivel hace cinco días. Una cruz alcista ocurre cuando la EMA de 5 días se mueve por encima de la EMA de 35 días sobre un volumen por encima del promedio. Media bajista media móvil: Esta escanea busca acciones con una media móvil simple descendente de 150 días y una cruz bajista de la EMA de 5 días y de la EMA de 35 días. La media móvil de 150 días está cayendo, siempre y cuando se está negociando por debajo de su nivel hace cinco días. Una cruz bajista ocurre cuando la EMA de 5 días se mueve por debajo de la EMA de 35 días sobre un volumen por encima del promedio. Estudio adicional El libro de John Murphy tiene un capítulo dedicado a los promedios móviles ya sus diversos usos. Murphy cubre los pros y los contras de los promedios móviles. Además, Murphy muestra cómo los promedios móviles trabajan con Bollinger Bands y los sistemas comerciales basados en canales. Análisis Técnico de los Mercados Financieros John MurphyMoving Promedio - MA BREAKING DOWN Media móvil - MA Como ejemplo de SMA, considere un valor con los siguientes precios de cierre en 15 días: Semana 1 (5 días) 20, 22, 24, 25, 23 Semana 28, 30, 27, 29, 28 Un MA de 10 días promediaría los precios de cierre de los primeros 10 días como el primer punto de datos . El próximo punto de datos bajaría el precio más temprano, agregaría el precio el día 11 y tomaría el promedio, y así sucesivamente como se muestra a continuación. Como se mencionó anteriormente, las AMs se retrasan en la acción de los precios actuales porque se basan en precios pasados, mientras más largo sea el período de tiempo para la MA, mayor será el retraso. Por lo tanto, un MA de 200 días tendrá un grado mucho mayor de retraso que un MA de 20 días porque contiene precios durante los últimos 200 días. La longitud de la MA a utilizar depende de los objetivos comerciales, con MA más cortos utilizados para el comercio a corto plazo y de más largo plazo MA más adecuado para los inversores a largo plazo. El MA de 200 días es ampliamente seguido por inversores y comerciantes, con rupturas por encima y por debajo de este promedio móvil considerado como señales comerciales importantes. Las MA también imparten señales comerciales importantes por sí solas, o cuando dos medias se cruzan. Un aumento MA indica que la seguridad está en una tendencia alcista. Mientras que un MA decreciente indica que está en una tendencia bajista. Del mismo modo, el impulso ascendente se confirma con un cruce alcista. Que se produce cuando una MA a corto plazo cruza por encima de un MA a más largo plazo. El impulso hacia abajo se confirma con un cruce bajista, que ocurre cuando una MA a corto plazo cruza por debajo de un MA a largo plazo. Promedios de movimiento: Cuáles son? Entre los indicadores técnicos más populares, se utilizan medias móviles para medir la dirección de la tendencia actual . Cada tipo de media móvil (comúnmente escrito en este tutorial como MA) es un resultado matemático que se calcula promediando un número de puntos de datos pasados. Una vez determinado, el promedio resultante se traza en un gráfico para permitir a los operadores ver los datos suavizados en lugar de centrarse en las fluctuaciones de precios cotidianas que son inherentes a todos los mercados financieros. La forma más simple de una media móvil, apropiadamente conocida como media móvil simple (SMA), se calcula tomando la media aritmética de un conjunto dado de valores. Por ejemplo, para calcular una media móvil básica de 10 días, sumaría los precios de cierre de los últimos 10 días y luego dividiría el resultado en 10. En la figura 1, la suma de los precios de los últimos 10 días (110) es Dividido por el número de días (10) para llegar al promedio de 10 días. Si un comerciante desea ver un promedio de 50 días en lugar, el mismo tipo de cálculo se haría, pero incluiría los precios en los últimos 50 días. El promedio resultante a continuación (11) tiene en cuenta los últimos 10 puntos de datos con el fin de dar a los comerciantes una idea de cómo un activo tiene un precio en relación con los últimos 10 días. Quizás usted se está preguntando porqué los comerciantes técnicos llaman a esta herramienta una media móvil y no apenas una media regular. La respuesta es que cuando los nuevos valores estén disponibles, los puntos de datos más antiguos deben ser eliminados del conjunto y los nuevos puntos de datos deben entrar para reemplazarlos. Por lo tanto, el conjunto de datos se mueve constantemente para tener en cuenta los nuevos datos a medida que estén disponibles. Este método de cálculo garantiza que sólo se contabilice la información actual. En la Figura 2, una vez que se agrega el nuevo valor de 5 al conjunto, el cuadro rojo (que representa los últimos 10 puntos de datos) se desplaza hacia la derecha y el último valor de 15 se deja caer del cálculo. Debido a que el valor relativamente pequeño de 5 reemplaza el valor alto de 15, se esperaría ver el promedio de la disminución de conjunto de datos, lo que hace, en este caso de 11 a 10. Qué aspecto tienen los promedios móviles Una vez que los valores de la MA se han calculado, se representan en un gráfico y luego se conectan para crear una línea de media móvil. Estas líneas curvas son comunes en las cartas de los comerciantes técnicos, pero la forma en que se utilizan puede variar drásticamente (más sobre esto más adelante). Como se puede ver en la Figura 3, es posible agregar más de un promedio móvil a cualquier gráfico ajustando el número de períodos de tiempo utilizados en el cálculo. Estas líneas curvas pueden parecer distracción o confusión al principio, pero youll acostumbrarse a ellos a medida que pasa el tiempo. La línea roja es simplemente el precio medio en los últimos 50 días, mientras que la línea azul es el precio promedio en los últimos 100 días. Ahora que usted entiende lo que es un promedio móvil y lo que parece, bien introducir un tipo diferente de media móvil y examinar cómo se diferencia de la mencionada media móvil simple. La media móvil simple es muy popular entre los comerciantes, pero como todos los indicadores técnicos, tiene sus críticos. Muchas personas argumentan que la utilidad de la SMA es limitada porque cada punto en la serie de datos se pondera de la misma, independientemente de dónde se produce en la secuencia. Los críticos sostienen que los datos más recientes son más significativos que los datos anteriores y deberían tener una mayor influencia en el resultado final. En respuesta a esta crítica, los comerciantes comenzaron a dar más peso a los datos recientes, que desde entonces ha llevado a la invención de varios tipos de nuevos promedios, el más popular de los cuales es el promedio móvil exponencial (EMA). Promedio móvil exponencial El promedio móvil exponencial es un tipo de media móvil que da más peso a los precios recientes en un intento de hacerla más receptiva A nueva información. Aprender la ecuación algo complicada para calcular un EMA puede ser innecesario para muchos comerciantes, ya que casi todos los paquetes de gráficos hacen los cálculos para usted. Sin embargo, para los geeks de matemáticas que hay, aquí es la ecuación EMA: Cuando se utiliza la fórmula para calcular el primer punto de la EMA, puede observar que no hay ningún valor disponible para utilizar como la EMA anterior. Este pequeño problema se puede resolver iniciando el cálculo con una media móvil simple y continuando con la fórmula anterior desde allí. Le hemos proporcionado una hoja de cálculo de ejemplo que incluye ejemplos reales de cómo calcular una media móvil simple y una media móvil exponencial. La diferencia entre la EMA y la SMA Ahora que tiene una mejor comprensión de cómo se calculan la SMA y la EMA, echemos un vistazo a cómo estos promedios difieren. Al mirar el cálculo de la EMA, notará que se hace más hincapié en los puntos de datos recientes, lo que lo convierte en un tipo de promedio ponderado. En la Figura 5, el número de periodos de tiempo utilizados en cada promedio es idéntico (15), pero la EMA responde más rápidamente a los precios cambiantes. Observe cómo el EMA tiene un valor más alto cuando el precio está subiendo, y cae más rápidamente que el SMA cuando el precio está disminuyendo. Esta capacidad de respuesta es la razón principal por la que muchos comerciantes prefieren utilizar la EMA sobre la SMA. Qué significan los diferentes días? Las medias móviles son un indicador totalmente personalizable, lo que significa que el usuario puede elegir libremente el tiempo que desee al crear el promedio. Los períodos de tiempo más comunes utilizados en las medias móviles son 15, 20, 30, 50, 100 y 200 días. Cuanto más corto sea el lapso de tiempo utilizado para crear el promedio, más sensible será a los cambios de precios. Cuanto más largo sea el lapso de tiempo, menos sensible o más suavizado será el promedio. No hay un marco de tiempo adecuado para usar al configurar sus promedios móviles. La mejor manera de averiguar cuál funciona mejor para usted es experimentar con una serie de diferentes períodos de tiempo hasta encontrar uno que se adapte a su estrategia. Medios móviles: cómo utilizarlos Suscríbase a las noticias para utilizar para obtener las últimas ideas y análisis Gracias por inscribirse en Investopedia Insights - noticias para usar. En la práctica, el promedio móvil proporcionará una buena estimación de la media de la serie temporal si la media Es constante o cambia lentamente. En el caso de una media constante, el mayor valor de m dará las mejores estimaciones de la media subyacente. Un período de observación más largo promediará los efectos de la variabilidad. El propósito de proporcionar un m más pequeño es permitir que el pronóstico responda a un cambio en el proceso subyacente. Para ilustrar, proponemos un conjunto de datos que incorpora cambios en la media subyacente de la serie temporal. La figura muestra las series temporales utilizadas para la ilustración junto con la demanda media a partir de la cual se generó la serie. La media comienza como una constante en 10. Comenzando en el tiempo 21, aumenta en una unidad en cada período hasta que alcanza el valor de 20 en el tiempo 30. Entonces se vuelve constante otra vez. Los datos se simulan sumando a la media un ruido aleatorio de una distribución Normal con media cero y desviación estándar 3. Los resultados de la simulación se redondean al entero más próximo. La tabla muestra las observaciones simuladas utilizadas para el ejemplo. Cuando usamos la tabla, debemos recordar que en cualquier momento dado, sólo se conocen los datos pasados. Las estimaciones del parámetro del modelo, para tres valores diferentes de m se muestran junto con la media de las series temporales de la siguiente figura. La figura muestra la media móvil de la estimación de la media en cada momento y no la previsión. Los pronósticos cambiarían las curvas de media móvil a la derecha por períodos. Una conclusión es inmediatamente aparente de la figura. Para las tres estimaciones, la media móvil se queda por detrás de la tendencia lineal, con el retardo aumentando con m. El retraso es la distancia entre el modelo y la estimación en la dimensión temporal. Debido al desfase, el promedio móvil subestima las observaciones a medida que la media aumenta. El sesgo del estimador es la diferencia en un tiempo específico en el valor medio del modelo y el valor medio predicho por el promedio móvil. El sesgo cuando la media está aumentando es negativo. Para una media decreciente, el sesgo es positivo. El retraso en el tiempo y el sesgo introducido en la estimación son funciones de m. Cuanto mayor sea el valor de m. Mayor es la magnitud del retraso y sesgo. Para una serie cada vez mayor con tendencia a. Los valores de retraso y sesgo del estimador de la media se dan en las ecuaciones siguientes. Las curvas de ejemplo no coinciden con estas ecuaciones porque el modelo de ejemplo no está aumentando continuamente, sino que comienza como una constante, cambia a una tendencia y luego vuelve a ser constante de nuevo. También las curvas de ejemplo se ven afectadas por el ruido. El pronóstico de media móvil de los períodos en el futuro se representa desplazando las curvas hacia la derecha. El desfase y sesgo aumentan proporcionalmente. Las ecuaciones a continuación indican el retraso y sesgo de los períodos de previsión en el futuro en comparación con los parámetros del modelo. Nuevamente, estas fórmulas son para una serie de tiempo con una tendencia lineal constante. No debemos sorprendernos de este resultado. El estimador del promedio móvil se basa en el supuesto de una media constante, y el ejemplo tiene una tendencia lineal en la media durante una parte del período de estudio. Dado que las series de tiempo real rara vez obedecerán exactamente las suposiciones de cualquier modelo, debemos estar preparados para tales resultados. También podemos concluir de la figura que la variabilidad del ruido tiene el efecto más grande para m más pequeño. La estimación es mucho más volátil para el promedio móvil de 5 que el promedio móvil de 20. Tenemos los deseos en conflicto de aumentar m para reducir el efecto de la variabilidad debido al ruido y disminuir m para hacer el pronóstico más sensible a los cambios En promedio El error es la diferencia entre los datos reales y el valor previsto. Si la serie temporal es verdaderamente un valor constante, el valor esperado del error es cero y la varianza del error está compuesta por un término que es una función de y un segundo término que es la varianza del ruido. El primer término es la varianza de la media estimada con una muestra de m observaciones, suponiendo que los datos provienen de una población con una media constante. Este término se minimiza haciendo m tan grande como sea posible. Un m grande hace que el pronóstico no responda a un cambio en la serie temporal subyacente. Para hacer que el pronóstico responda a los cambios, queremos que m sea lo más pequeño posible (1), pero esto aumenta la varianza del error. La predicción práctica requiere un valor intermedio. Previsión con Excel El complemento de previsión implementa las fórmulas de promedio móvil. El siguiente ejemplo muestra el análisis proporcionado por el complemento para los datos de muestra en la columna B. Las primeras 10 observaciones se indexan -9 a 0. En comparación con la tabla anterior, los índices de período se desplazan en -10. Las primeras diez observaciones proporcionan los valores iniciales para la estimación y se utilizan para calcular la media móvil para el período 0. La columna MA (10) (C) muestra las medias móviles calculadas. El parámetro de la media móvil m está en la celda C3. La columna Fore (1) (D) muestra un pronóstico para un período en el futuro. El intervalo de pronóstico está en la celda D3. Cuando el intervalo de pronóstico se cambia a un número mayor, los números de la columna Fore se desplazan hacia abajo. La columna Err (1) (E) muestra la diferencia entre la observación y el pronóstico. Por ejemplo, la observación en el tiempo 1 es 6. El valor pronosticado a partir de la media móvil en el tiempo 0 es 11.1. El error entonces es -5.1. La desviación estándar y la media de la desviación media (MAD) se calculan en las celdas E6 y E7, respectivamente. Indicador promedio de movimiento Las medias móviles proporcionan una medida objetiva de la dirección de la tendencia al suavizar los datos de precios. Normalmente calculado utilizando los precios de cierre, la media móvil también se puede utilizar con la mediana. típico. Cierre ponderado. Y los precios altos, bajos o abiertos, así como otros indicadores. Medias móviles de menor longitud son más sensibles e identifican nuevas tendencias antes, pero también dan más falsas alarmas. Los promedios móviles más largos son más confiables pero menos sensibles, sólo recogiendo las grandes tendencias. Utilice un promedio móvil que sea la mitad de la duración del ciclo que está siguiendo. Si la duración del ciclo de pico a pico es de aproximadamente 30 días, entonces un promedio móvil de 15 días es apropiado. Si 20 días, entonces un promedio móvil de 10 días es apropiado. Sin embargo, algunos comerciantes usarán medias móviles de 14 y 9 días para los ciclos anteriores con la esperanza de generar señales ligeramente por delante del mercado. Otros favorecen los números Fibonacci de 5, 8, 13 y 21. Los promedios móviles de entre 100 y 200 días (20 a 40 semanas) son populares para ciclos más largos Los promedios móviles de 20 a 65 días (4 a 13 semanas) son útiles para ciclos intermedios y 5 A 20 días para ciclos cortos. El sistema de media móvil más simple genera señales cuando el precio cruza la media móvil: Ir largo cuando el precio cruza por encima de la media móvil desde abajo. Ir corto cuando el precio cruza por debajo de la media móvil de arriba. El sistema es propenso a los whipsaws en los mercados que se extienden, con el precio que cruza adelante y hacia atrás a través de la media móvil, generando un gran número de señales falsas. Por esta razón, los sistemas de media móvil emplean normalmente filtros para reducir las sierras. Los sistemas más sofisticados utilizan más de un promedio móvil. Dos Promedios móviles utiliza un promedio móvil más rápido como sustituto del precio de cierre. Tres promedios móviles emplea una tercera media móvil para identificar cuándo el precio varía. Múltiples promedios móviles usan una serie de seis promedios rápidos y seis promedios lentos para confirmarse mutuamente. Los promedios móviles desplazados son útiles para propósitos de seguimiento de tendencias, reduciendo el número de whipsaws. Los canales de Keltner usan bandas trazadas en un múltiplo de la gama verdadera media para filtrar los crossovers medios móviles. El popular MACD (Moving Average Convergence Divergence) indicador es una variación del sistema de media móvil dos, representado como un oscilador que resta el promedio de movimiento lento de la media de movimiento rápido. Hay varios tipos diferentes de promedios móviles, cada uno con sus propias peculiaridades. Los promedios móviles simples son los más fáciles de construir, pero también los más propensos a la distorsión. Las medias móviles ponderadas son difíciles de construir, pero confiables. Las medias móviles exponenciales alcanzan los beneficios de la ponderación combinada con la facilidad de construcción. Wilder promedios móviles se utilizan principalmente en los indicadores desarrollados por J. Welles Wilder. Esencialmente, la misma fórmula que los promedios móviles exponenciales, que utilizan pesos diferentes mdash para que los usuarios necesitan para tener en cuenta. El panel de indicadores muestra cómo configurar las medias móviles. El valor predeterminado es un promedio móvil exponencial de 21 días.
No comments:
Post a Comment